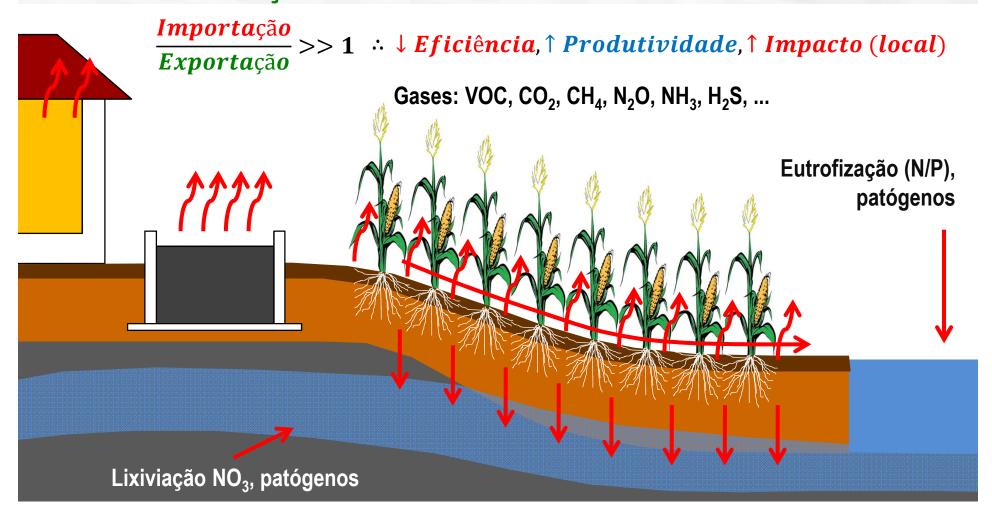
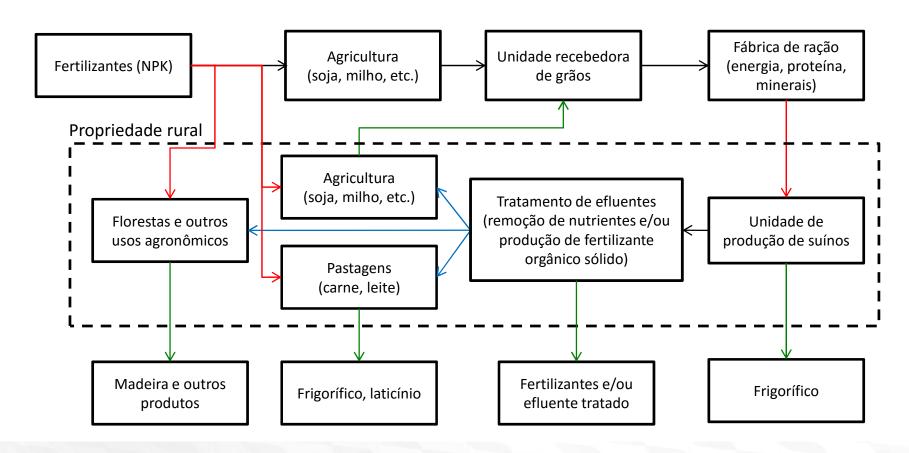
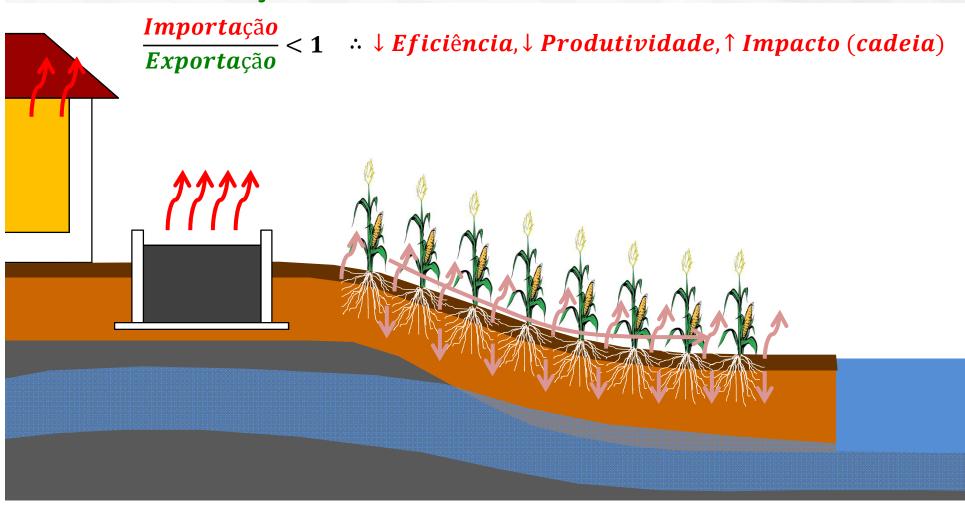
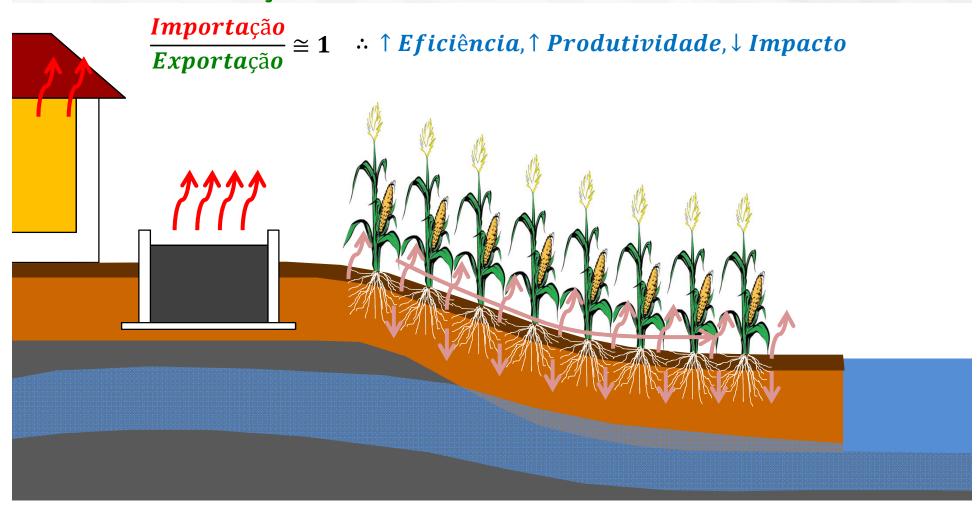

Modelo de gestão ambiental para a suinocultura


Rodrigo S. Nicoloso Eng. Agrônomo, Dr. Núcleo Temático de Meio Ambiente Embrapa Suínos e Aves

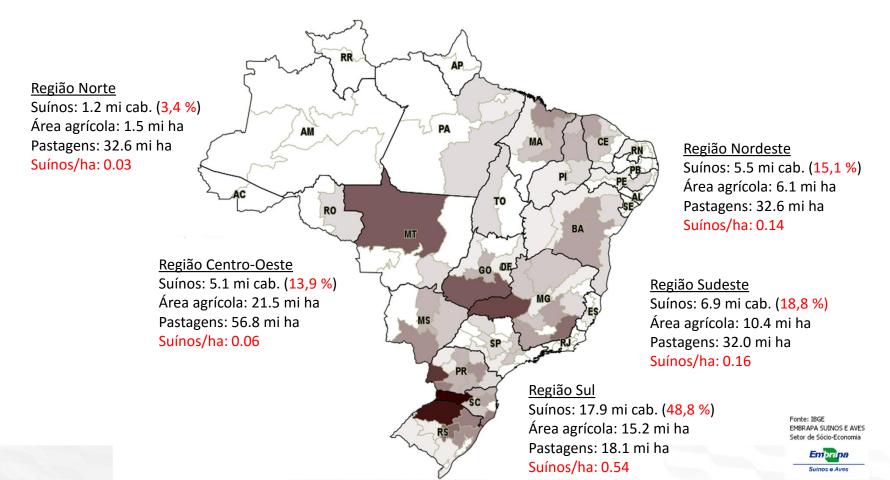






Suinocultura no <u>Sul</u>:

- Estrutura fundiária (<20 ha)
- Topografia (fortemente ondulado)
- Baixa demanda por fertilizantes



Suinocultura no <u>Centro-Oeste</u>:

- Estrutura fundiária (>100 ha)
- Topografia (plano)
- Alta demanda por fertilizantes

Rotas tecnológicas

Tratamento por rota líquida

Fertilizantes orgânicos

Tratamento por rota sólida

Perguntas:

- Qual o problema a ser resolvido?
- Quais as indicações e limitações de cada tecnologia?
- Que oportunidades surgem com a adoção de cada tecnologia?

Rotas tecnológicas: biodigestão anaeróbia

Indicação: Redução da DBO/DQO (carbono) e geração do biogás

Limitações: Requer investimento em biodigestores e armazenamento do biofertilizante

Não remove nutrientes (NPK)

Sistema de tratamento pós-biodigestor (SISTRATES, microalgas, etc.)

Oportunidades: Adaptável a diferentes escalas e níveis tecnológicos (modelos de biodigestores)

Aproveitamento do biogás (aquecimento, energia elétrica, biometano)

Biofertilizante rico em nutrientes (NPK)

Rotas tecnológicas: compostagem

Indicação: Evaporação da água (redução do volume) e produção de um fertilizante orgânico sólido

Limitações: Investimento em estrutura e equipamento de compostagem

Custo de operação (substrato, energia elétrica, operador)

Requer redução do consumo de água na granja e dejetos com mínimo de 4% de MS

Atenção ao manejo das leiras de compostagem

Oportunidades: Adaptável a diferentes escalas

Concentra nutrientes no fertilizante (menor custo de transporte e exportação de excedente) Fertilizante orgânico registrável no MAPA e base para fertilizantes organominerais

Rotas tecnológicas: fertilizantes orgânicos

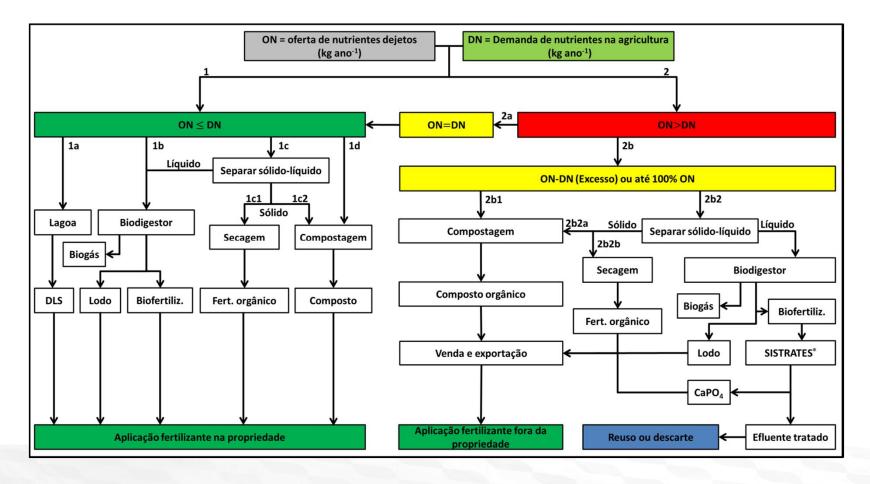
Indicação: Aproveitamento do valor fertilizante dos dejetos

Limitações: Requer estrutura de armazenamento projetada de acordo com calendário agrícola

Custo de transporte e aplicação nas áreas agrícolas

Necessidade de área agrícola compatível com oferta de nutrientes

Oportunidades: Redução do custo de produção na agricultura (substituição aos fertilizantes minerais)


Fertilizantes organominerais fluidos

Fertirrigação e outras tecnologias de aplicação

Rotas tecnológicas: tomada de decisão

Dimensionamento de granjas - IN11-2004/FATMA-SC

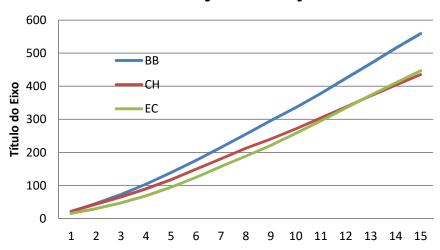
Animais por Categoria	nº Atual	Nº Futuro	Produção de Dejetos (m³/d)
	Fêr	meas / Leitões	
Fêmeas c/ Leitões (em lactação)		55.65	x 0,027 =
Fêmeas em Gestação			x 0,0162 =
Leitões em Creche			x 0,0014 =
Suínos em Crescimento/Terminação			x 0,007 =
Machos			x 0,009 =
TOTAL			

3. CARACTERIZAÇÃO DA PROPRIEDADE E OCUPAÇÃO DO SOLO

Disponibilidade de Terra	Área (ha)
Terras próprias (total)	
Arrendadas de terceiros	
Parcerias com terceiros	
TOTAL	

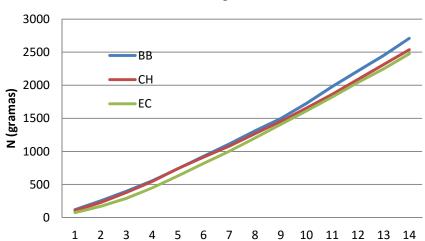
3.1 UTILIZAÇÃO DO SOLO:

ESPECIFICAÇÕES	Área (ha)
Culturas Anuais / Permanente (milho, feijão, soja, arroz, etc.)	
Pastagem	
Reserva nativa	
Reflorestamento	
Outras	


Área Útil Para Distribuição dos Dejetos: _	ha
0.511	

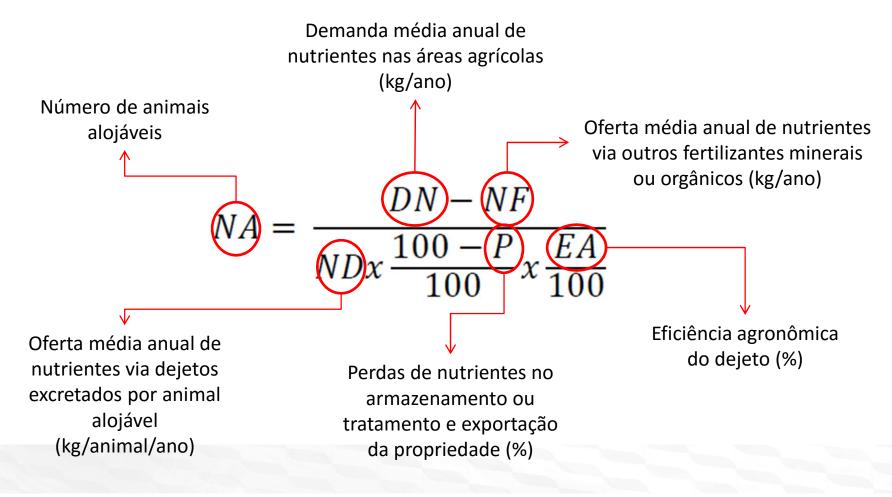
m³/dia x 365 = área útil Limite = 50 m³/ha/ano

Volume de dejetos e excreção de nutrientes



UT – Produção de dejetos

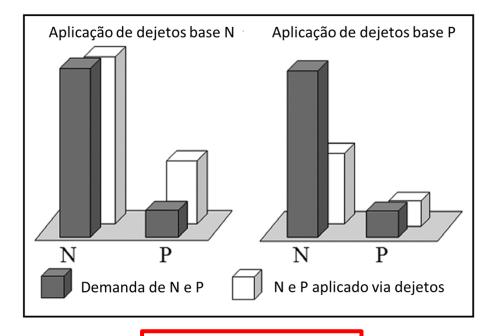
Média= 4,5 L/suíno/dia Desvpad = 0,65 L/suíno/dia Desvpad = 14,3 %


UT - Excreção de N

Média= 2,57 kg N/suíno Desvpad = 0,12 kg N/suíno Desvpad = 4,6 %

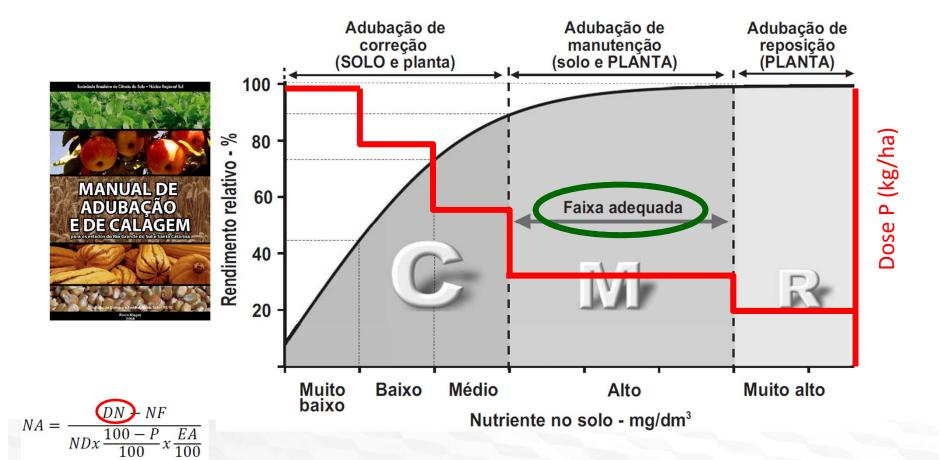
Fonte: Adaptado de Tavares (2012)

Tabela 1. Consumo de água, produção de dejetos e excreção de nutrientes de acordo com o sistema de produção de suínos.


Sistema de produção	Unidade	Água	Doiatos	Excreção de nutrientes		
Sistema de produção	Ullidade	Agua	Dejetos	N	P_2O_5	K ₂ O
		L anim	al ⁻¹ dia ⁻¹	kg	; animal ⁻¹ and	o ⁻¹
U.P. Ciclo Completo ¹	matriz	72,90	47,10	85,70	49,60	46,90
U.P. Leitões Desmamados ²	matriz	27,80	16,20	14,50	11,00	9,60
U.P. Leitões ²	matriz	35,30	22,80	25,70	18,00	19,40
U.P. Leitões em Creche	leitão	2,50	2,30	0,40	0,25	0,35
U.P. Suínos em Terminação ³	suíno	8,30	4,50	8,00	4,30	4,00
Wean-to-finish (single stock)	suíno	10,80	6,80	8,40	4,55	4,35
Wean-to-finish (double stock)	suíno	6,65	4,55	4,40	2,40	2,35

¹Considerando 2,35 partos por matriz alojada por ano, a produção de 28 leitões por matriz alojada por ano e 12 suínos terminados por matriz alojada por ano. ²Considerando 2,35 partos por matriz alojada por ano e a produção de 28 leitões por matriz alojada por ano. ³Considerando 3,26 lotes por ano (lotes de 105 dias e 7 dias de intervalo entre lotes). Fonte: Tavares (2012); CORPEN (2003); Dourmade et al. (2007).

$$NA = \frac{DN - NF}{ND} \frac{100 - P}{100} x \frac{EA}{100}$$


	N	P_2O_5	K ₂ O
MILHO	6	1	4
TRIGO	4	1	3
ARROZ	2	1	1
PASTAGEM	6	1	3
SOJA	0	1	2
DEJETO DE SUÍNOS	1,2	1	0,6
CAMA DE AVIÁRIO	0,9	1	0,4

Nutriente limitante: P

$$NA = \frac{DN - NF}{NDx \frac{100 - P}{100} x \frac{EA}{100}}$$

Demanda de nutrientes

Fósforo e potássio(1)

Interpretação do teor	Fósforo por cultivo		Potássio por cultivo			
de P ou de K no solo	10	20	10	20		
	kg de P ₂ O ₅ /ha		kg de P ₂ O ₅ /ha		kg de	K₂O/ha
Muito baixo	125	85	110	70		
Baixo	85	65	70	50		
Médio	75	45	60	30		
Alto	45	45	30	30		
Muito alto	0	≤ 45	0	≤ 30		

Para a expectativa de rendimento maior do que 4 t/ha, acrescentar aos valores da tabela 15 kg de P_2O_5/ha e 10 kg de K_2O/ha , por tonelada adicional de grãos a serem produzidos.

$$NA = \frac{DN - NF}{NDx \frac{100 - P}{100} x \frac{EA}{100}}$$

⁽¹⁾ Ver itens 7.4 e 7.9.

Tabela 1. Cálculo da necessidade de adubação fosfatada (demanda de fósforo: DP) para manutenção dos teores de P no nível alto de suficiência segundo CQFS-RS/SC (2004 e atualizações). Valores em *itálico* são exemplos. Usar o mesmo modelo desta tabela para cálculo da demanda de N e K₂O

Talhão	Área	Ano	Cultura	Expectativa de produtividade	Dose de manutenção de P	Demanda de F (dose x área)
nome/nº	ha			ton ha ⁻¹	kg P ₂ O ₅ ha ⁻¹	kg P ₂ O ₅
			Milho	10	135	2.700
		1	Milho silagem	20	180	3.600
		Pastagem inverno (aveia+azevém)	8	70	1.400	
		2	Milho	10	135	2.700
			Trigo	3	45	900
1	1 20		Pastagem verão (milheto)	12	100	2.000
	3	Pastagem inverno (aveia+azevém)	8	70	1.400	
		4	Milho	10	135	2.700
			Pastagem inverno (aveia+azevém)	8	70	1.400
					Sub-total 1	18.800
		1				
		2				
2		3				
		4				
					Sub-total 2	
		1				
		2				
n	3					
	4					
					Sub-total n	
DN - NF	3				Total	18.800
$\frac{100-P}{1000} \times \frac{EA}{1000}$					Média anual (total/4) (kg P₂O₅ ano⁻¹)	4.700

$$NA = \frac{DN - NF}{NDx \frac{100 - P}{100} x \frac{EA}{100}}$$

Tabela 3. Perdas ou remoção de nutrientes em diferentes sistemas de tratamento ou armazenamento dos dejetos.

Sistema de tratamento e armazenamento	Sistema de tratamento e armazenamento Nutriente			
	N	K₂O		
	1-	· %		
Esterqueira ^a	40 - 50	0	0	
Biodigestor e lagoa anaeróbia ^b	50 - 60	0	0	
Compostagem ^c	60 - 70	0	0	
Separação de fases (decanter) – remoção da fase líquida (dejeto fresco) ^d	10 -15	50 - 55	15-25	
Separação de fases (decanter) – remoção da fase líquida (dejeto velho) ^d	10 -15	45 -50	15-25	
Outros	Informar eficiência do equipamento ou do sistema de tratamento dos dejetos, citando referencia científica ou laud técnico do equipamento.			

^a Fonte: Higarashi (dados não publicados);

$$NA = \frac{DN - NF}{NDx \frac{100 - P}{100} x \frac{EA}{100}}$$

^b Fonte: Vivan et al. (2010);

^c Fonte: Angnes et al. (2013);

^d Fonte: Oliveira (2009).

Demanda de nutrientes

Eficiência agronômica do fertilizante

Tabela 4. Índice de eficiência agronômica dos nutrientes de acordo com o tipo de fertilizante.

Tipo de fertilizante orgânico	Índice de eficiência agronômica (1°+2° cultiv				
	N P ₂ O ₅		K ₂ O		
	%				
Dejeto líquido de suínos (não tratado, efluente de biodigestor e separação de fases) ^a	80	100	100		
Esterco sólido de suínos (separação de fases) ^a	80	100	100		
Composto orgânico e cama sobreposta	40 ^b	100°	100°		

a.Fonte: CQFS-RS/SC (2004);

$$NA = \frac{DN - NF}{NDx \frac{100 - P}{100} x \frac{EA}{100}}$$

^b.Fonte: Giacomini e Aita (2008);

^c.Não determinado, considerar 100%.

Tabela 26. Exportação de nutrientes na Bacia do Lajeado Pato Roxo.

Nutuionto		Cul	tura		Total	Total Venda de Tot		
Nutriente	Milho	Soja	Feijão	Trigo	O Vegetal	Dejetos	Export.	
N (kg)	93.011	0	360	1.728	95.099	73.372	168.471	
P (kg)	16.294	357	47	276	16.974	23.410	40.385	

Tabela 27. Importação de nutrientes na Bacia do Pato Roxo.

Nutriente	Suínos	Aves	Bovinos	Total Pecuária	Adubo Sintético	Total Ingresso
N (kg)	143.626	301.241	52.288	497.155	109.145	606.300
P (kg)	23.881	96.115	31.488	151.484	26.116	177.600

$$NA = \frac{DN - NF}{NDx \frac{100 - P}{100} x \frac{EA}{100}}$$

Fonte: Antonelo, 2011

- Tipo de granja: Unidade de Terminação (UT)
- Excreção de P por animal alojável (UT): 4,3 kg P₂O₅/animal/ano

$$NA = \frac{DN - NF}{NDx \frac{100 - P}{100} x \frac{EA}{100}}$$

1. Esterqueira e alta demanda (milho grão, silagem e pastagem)

DN (P) = 385 kg
$$P_2O_5/ha/ano$$

$$NA = (385 - 0) / 4,3 \times 1 \times 1$$

2. Esterqueira e baixa demanda (milho e trigo):

DN (P) = 180 kg
$$P_2O_5/ha/ano$$

$$NA = (180 - 0) / 4,3 \times 1 \times 1$$

3. Esterqueira e alta demanda mas com uso intensivo de fertilizantes minerais:

DN (P) = 385 kg
$$P_2O_5/ha/ano$$

NF (P) = 180 kg
$$P_2O_5$$
/ano

$$NA = (385 - 180) / 4,3 \times 1 \times 1$$

Monitoramento de efluentes

Monitoramento sistema tratamento (biodigestor + 2 lagoas + reservatório)

Tabela 4-1: Eficiência da remoção dos parâmetros físico-químicos (em %) do SCA.

Parâmetros	Efluente Bruto (mg.l ⁻¹)	Efluente Tratado (mg.l ⁻¹)	Eficiência %
DBO _{Estimada}	10.070	734	93
DQO	22.379	1.632	93
Nitrogênio Total	2.226	400	82
Nitrogênio Amoniacal	1.780	320	82
Fósforo	1.046	188	82
Potássio	435	74	83
Coliformes Termotolerantes	1,5E+11	600000	100
Cobre	9,6	3,5	64
Sódio	357	133	63
Alumínio	36,9	32,8	11
Cloreto	442,29	329,67	25
Alcalinidade Total	4.217	2.349	44
Condutividade Elétrica	23.861	2.823	88
Sólidos Dissolvidos Totais	15.509	1.834	88

Qual a utilidade destes indicadores para diagnóstico ambiental?

RESULTADOS DE ANÁLISES DE SOLO

Município:

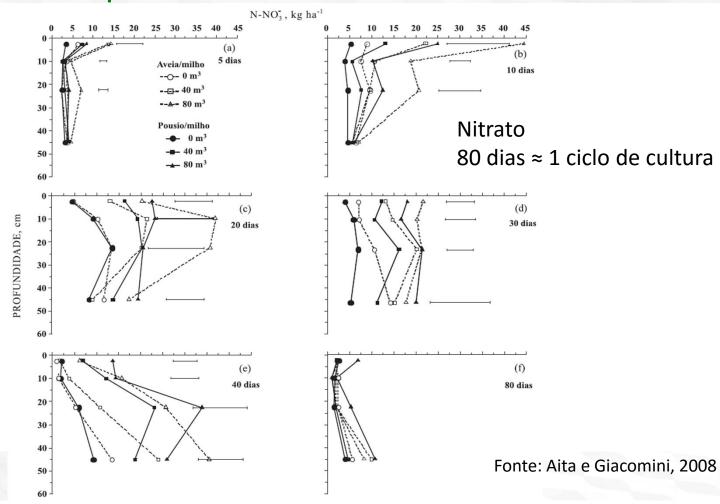
	Amo	ostras		ŀ	Н	Al ³⁺	H+AI	Ca	Mg	K	K	PMehlich	SB	CTCefet.(t)	CTC _{pH7} (T)	m	V	MO	C-org.	Fe	Cu	Zn	Mn	Sódio	Nitrogênio
Lab	Lote	Ponto	Prof.	H ₂ O	CaCl ₂		cn	nol _o /dn	1 ³		m	ig/dm³		cmol _c /dn	n ³		%	g/kg	mg/dm ³		ı	ng/dn	1 ³		N-total (%)
46661	1	1	0-30	4,8	3,9	0,76	2,7	1,9	0,6	0,07	26	5,3	2,6	3,3	5,3	23	49	10,7	6,2	70	0,2	0,5	28	0,42	0,11
46662	1	1	50-80	4,7	3,8	0,78	2,3	1,9	0,6	0,07	28	6,0	2,6	3,3	4,9	23	53	10,6	6,1	71	0,1	0,6	25	0,41	0,11
46663	1	2	0-30	5,0	4,2	0,43	1,5	2,2	0,7	0,07	28	5,9	2,9	3,4	4,4	13	66	10,2	5,9	42	0,2	0,6	28	0,50	0,10
46664	1	2	50-80	5,0	4,2	0,49	2,0	2,1	0,7	0,06	24	10,0	2,9	3,4	4,9	14	59	9,8	5,7	55	0,3	0,7	29	0,50	0,12
46665	1	3	0-30	4,6	3,8	1,07	2,1	1,9	0,6	0,06	24	6,8	2,5	3,6	4,6	30	54	9,5	5,5	51	0,1	0,4	21	0,51	0,11
46666	1	3	50-80	4,9	4,0	0,83	2,5	2,2	0,8	0,06	22	5,3	3,0	3,8	5,5	22	54	9,5	5,5	47	0,8	0,6	29	0,50	0,10
46667	1	4	0-30	4,9	4,1	0,68	2,3	2,2	0,8	0,07	28	5,7	3,0	3,7	5,3	18	57	9,1	5,3	47	0,2	0,8	27	0,42	0,11
46668	1	4	50-80	4,9	4,1	0,56	2,3	2,2	0,7	0,06	22	6,1	3,0	3,6	5,3	16	57	9,2	5,3	58	0,1	0,7	32	0,41	0,11

Métodos Utilizados:

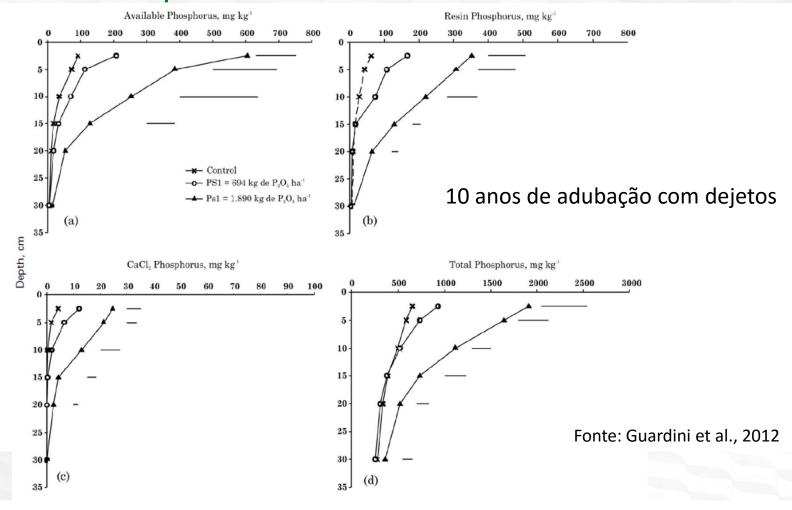
pH em H₂O estimado pela fórmula: pH H₂O=1,371+0,868 x pHCaCl₂

Ca, Mg - KCI / Abs. Atômica

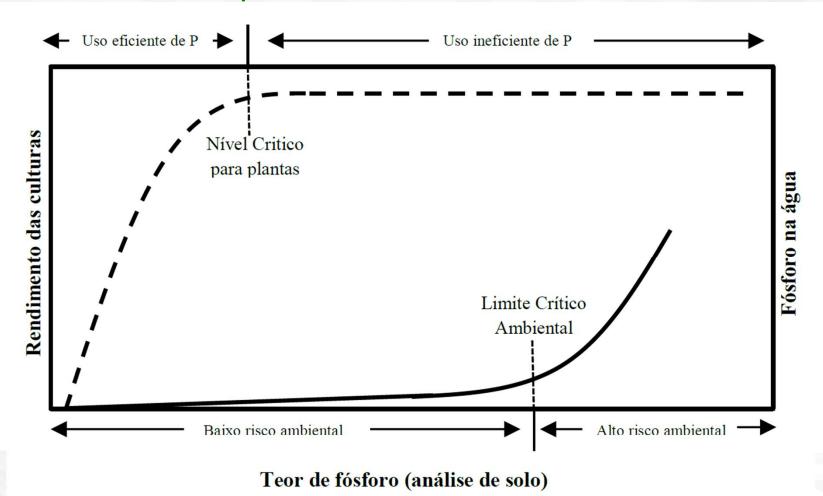
P, K e Na / Fe, Cu, Zn e Mn - Mehlich


H+AI - Acetato de Cálcio

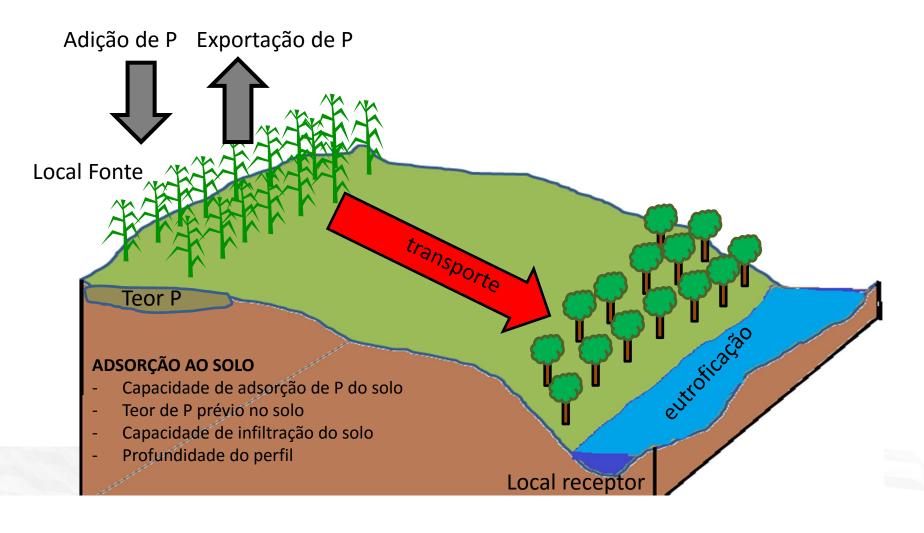
Matéria Orgânica (C.org.) - Titulometria


N-total: semi-micro Kjeldahl / Nitrato-Nitrito: KCL 2M liga de Deverda e ác. Sulfâmico

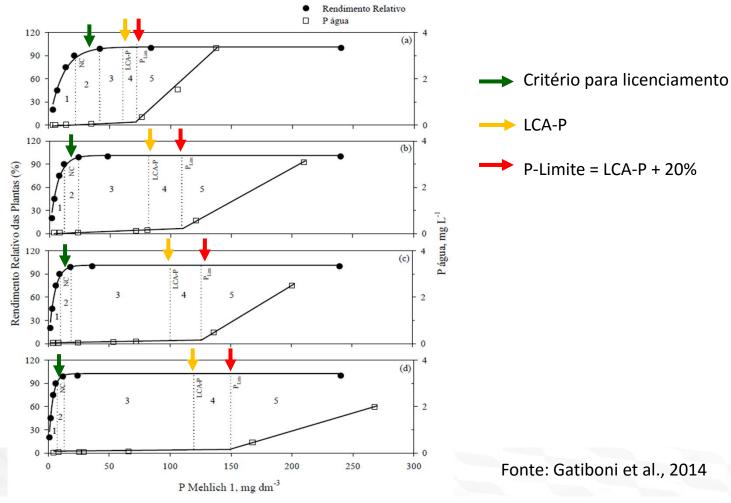
Qual a utilidade destes indicadores para diagnóstico ambiental? Todos são necessários?

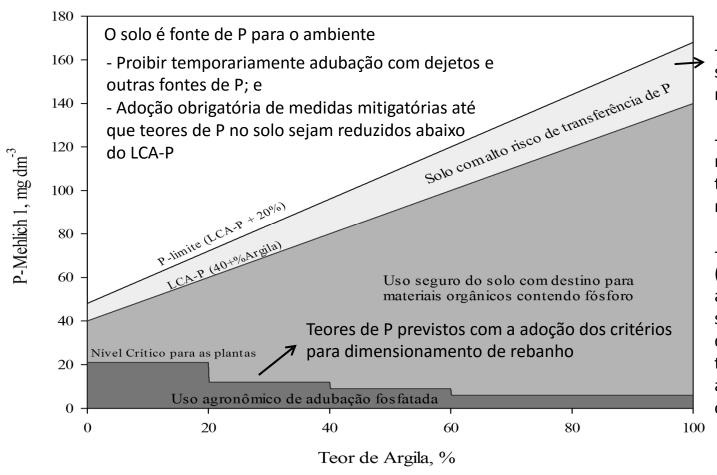

- Amostragem de solo
 - Onde? Georreferenciada (permite contra-prova e fiscalização)
 - Quantas amostras? 1 amostra composta por talhão ou 1 amostra composta a cada 5 ha (variabilidade espacial).
 - Que camada de solo? 0-10 cm
- Parâmetros a serem analisados
 - P, Cu e Zn
 - Métodos:

P: Mehlich-I (CQFS-RS/SC, 2004)

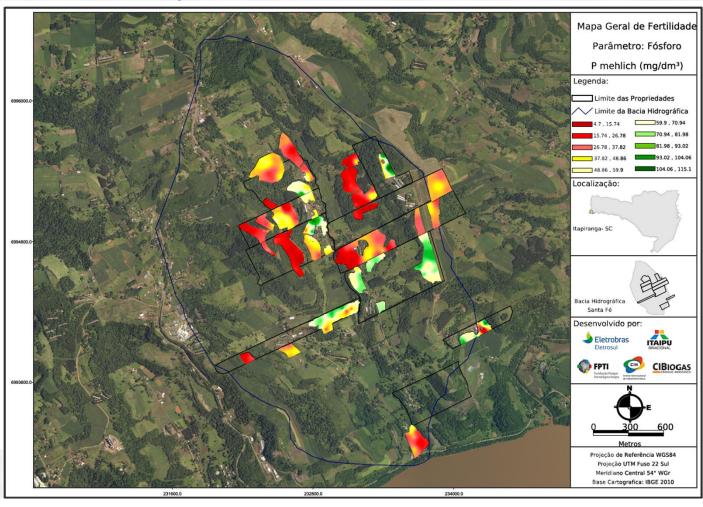

Cu e Zn: **USEPA 3050 e 3051** (CONAMA 420/2009) – VR e LCA ainda a definir.

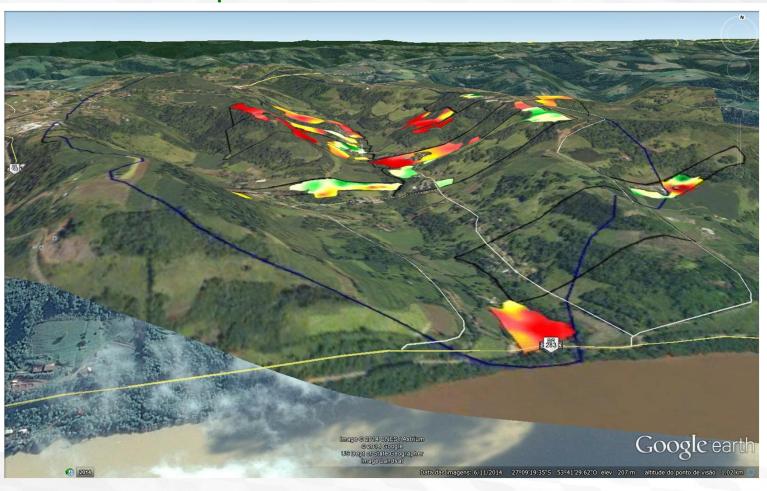
- Frequência de amostragem: 4 anos (renovação licença)
- Utilidade dos dados → fiscalização, tomada de decisão (órgão ambiental, produtor indústria, técnico responsável)
- Custo? Baixo!
- Valores limites: LCA-P, LCA-Cu e LCA-Zn
 - Prevenção: dimensionamento e uso correto dos fertilizantes
 - Mitigação: limitar uso de fertilizantes, aumentar extração/exportação de P

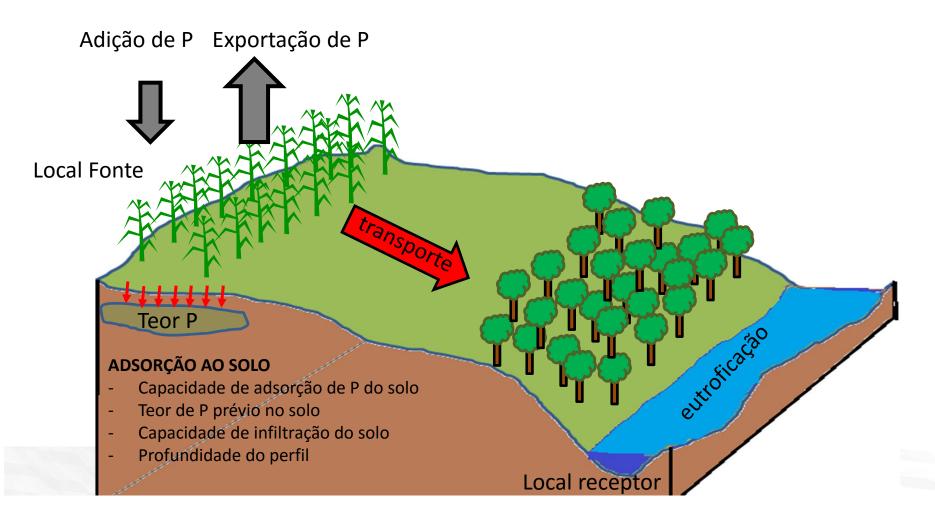




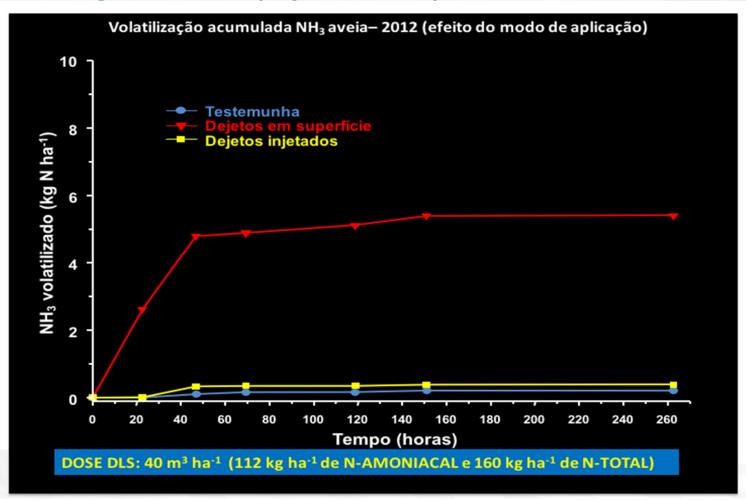
Fonte: Gatiboni et al., 2014

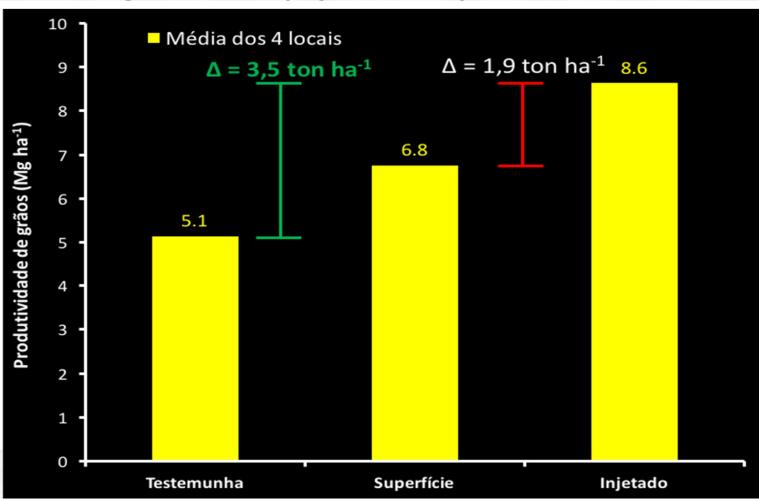

- Limitar o aporte de P ano solo a 50% da dose de manutenção; e
- Adoção obrigatória de medidas mitigatórias até que teores de P no solo sejam reduzidos abaixo do LCA-P.
- Se em até 4 anos (renovação licença ambiental) o teor de P no solo não for reduzido abaixo do LCA-P: proibir temporariamente a adubação com dejetos e outras fontes de P.

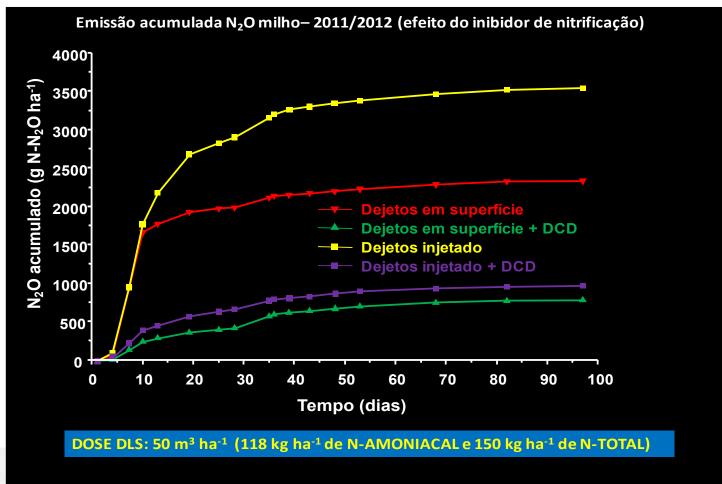

Monitoramento da qualidade do solo


Monitoramento da qualidade do solo

Medidas mitigatórias

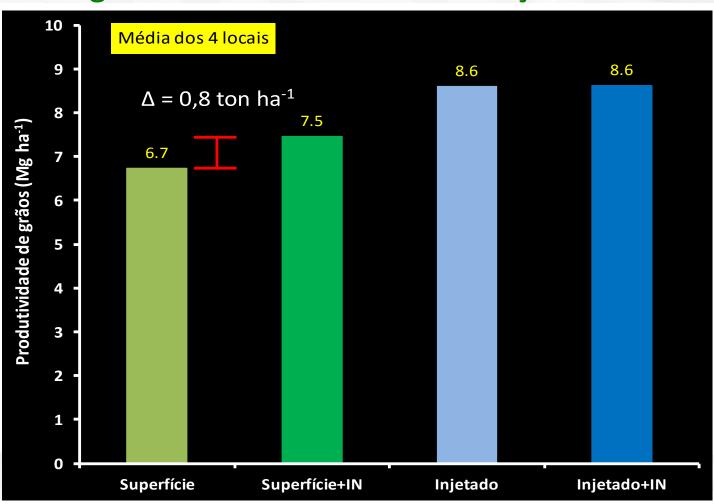






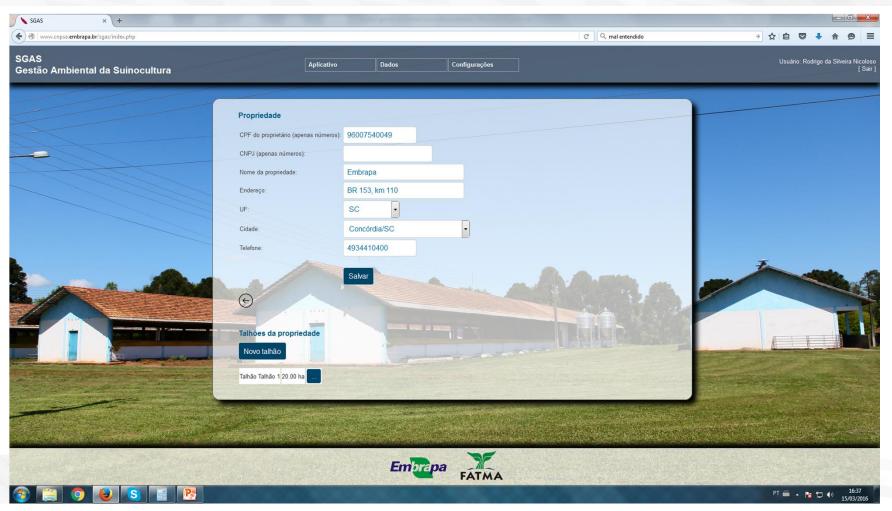
Medidas mitigatórias: inibidor de nitrificação

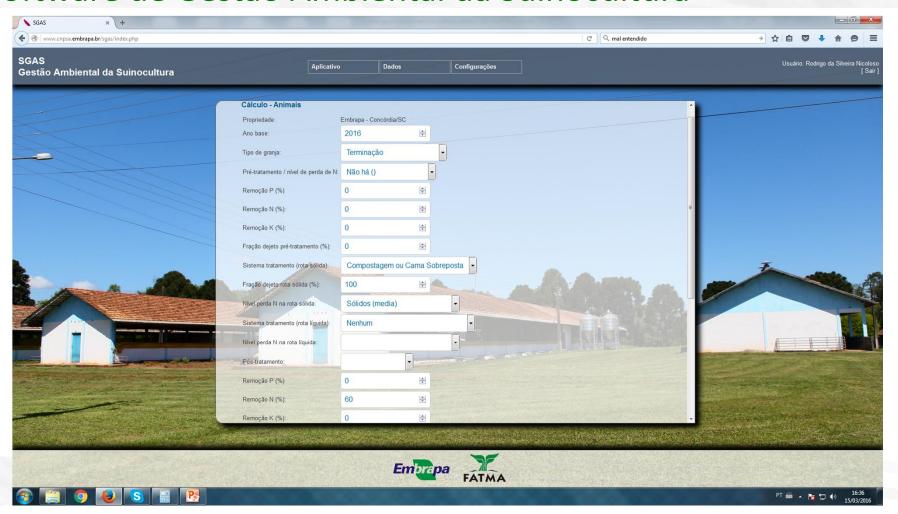
Medidas mitigatórias: inibidor de nitrificação


Tabela 2. Perdas de nitrogênio por lixiviação de nitrato (N-NO₃⁻) em lisímetros, após aplicação de dejetos líquidos de suínos (DLs) e bovinos (DLb) e de urina de vacas em lactação (UvI) e de ovelha (Uov) em pastagem, com e sem o inibidor de nitrificação dicianodiamida (DCD).

Tratamentos	N-NO ₃ lixiviado		Redução da lixiviação	N aplicado	Fonte
	kg ha ⁻¹	% N aplicado	%	kg ha ⁻¹	
Testemunha	1,1	_	_		
DLs injetado (DLsi)	20,3	9,6	_	200,0	1
DLsi + DCD (10 kg ha ⁻¹)	4,5	1,7	77,8		
Testemunha	7,6	_	_		
DLb	620,0	56,4	_	1.100,0	2
DLb + DCD (12 kg ha ⁻¹)	510,0	46,4	17,7		
Testemunha	4,9	_	_		
Uvl	66,5	10,3	_	600,0	3
Uvl + DCD (10 kg ha ⁻¹)	41,5	6,1	37,6		
Uvl	628,6	62,9	-	1.000,0	4
Uvl + DCD (10 kg ha ⁻¹)	400,6	40,1	36,3	1.000,0	4
Testemunha	1,1	_	_		
Uov	147,3	49,1	_	300,0	5
Uov + DCD (10 kg ha ⁻¹)	44,8	14,9	69,6		

Fontes: (1) Vallejo et al. (2005); (2) Williamson et al. (1998); (3) Zaman & Blennerhassett (2010); (4) Di & Cameron (2012); (5) Wild (2009).


Medidas mitigatórias: inibidor de nitrificação


Software de Gestão Ambiental da Suinocultura

Software de Gestão Ambiental da Suinocultura

Software de Gestão Ambiental da Suinocultura

Obrigado

rodrigo.nicoloso@embrapa.br (49) 3441-0400

